184 research outputs found

    Iron Necessity: The Secret of Wolbachia's Success?

    Get PDF
    The bacterium Wolbachia (order Rickettsiales) is probably the world's most successful vertically-transmitted symbiont, distributed among a staggering 40% of terrestrial arthropod species. Wolbachia has great potential in vector control due to its ability to manipulate its hosts' reproduction and to impede the replication and dissemination of arboviruses and other pathogens within haematophagous arthropods. In addition, the unexpected presence of Wolbachia in filarial nematodes of medical and veterinary importance has provided an opportunity to target the adult worms of Wuchereria bancrofti, Onchocerca volvulus, and Dirofilaria immitis with safe drugs such as doxycycline. A striking feature of Wolbachia is its phenotypic plasticity between (and sometimes within) hosts, which may be underpinned by its ability to integrate itself into several key processes within eukaryotic cells: oxidative stress, autophagy, and apoptosis. Importantly, despite significant differences in the genomes of arthropod and filarial Wolbachia strains, these nexuses appear to lie on a continuum in different hosts. Here, we consider how iron metabolism may represent a fundamental aspect of host homeostasis that is impacted by Wolbachia infection, connecting disparate pathways ranging from the provision of haem and ATP to programmed cell death, aging, and the recycling of intracellular resources. Depending on how Wolbachia and host cells interact across networks that depend on iron, the gradient between parasitism and mutualism may shift dynamically in some systems, or alternatively, stabilise on one or the other end of the spectrum

    Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota

    Get PDF
    BACKGROUND:Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. RESULTS:After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. CONCLUSIONS:An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies. However, we recommend that the same method is used on all samples within a particular study

    Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction

    Get PDF
    Variably present genes and pseudogenes in Rickettsia species tend to have been acquired more recently and to be more divergent from the genes conserved across all specie

    Draft Genome Sequence of Stenotrophomonas maltophilia SBo1 Isolated from Bactrocera oleae.

    Get PDF
    Bacteria of the genus Stenotrophomonas are ubiquitous in the environment and are increasingly associated with insects. Stenotrophomonas maltophilia SBo1 was cultured from the gut of Bactrocera oleae The draft genome sequence presented here will inform future investigations into the nature of the interaction between insects and their microbiota

    Revised Genome Sequence of the Purple Photosynthetic Bacterium Blastochloris viridis.

    Get PDF
    Blastochloris viridis is a unique anaerobic, phototrophic purple bacterium that produces bacteriochlorophyll b. Here we report an improved genome sequence of Blastochloris viridis DSM133, which is instrumental to the studies of photosynthesis, metabolic versatility, and genetic engineering of this microorganism

    Application of next-generation sequencing technologies in virology

    Get PDF
    The progress of science is punctuated by the advent of revolutionary technologies that provide new ways and scales to formulate scientific questions and advance knowledge. Following on from electron microscopy, cell culture and PCR, next-generation sequencing is one of these methodologies that is now changing the way that we understand viruses, particularly in the areas of genome sequencing, evolution, ecology, discovery and transcriptomics. Possibilities for these methodologies are only limited by our scientific imagination and, to some extent, by their cost, which has restricted their use to relatively small numbers of samples. Challenges remain, including the storage and analysis of the large amounts of data generated. As the chemistries employed mature, costs will decrease. In addition, improved methods for analysis will become available, opening yet further applications in virology including routine diagnostic work on individuals, and new understanding of the interaction between viral and host transcriptomes. An exciting era of viral exploration has begun, and will set us new challenges to understand the role of newly discovered viral diversity in both disease and health

    Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance

    Get PDF
    The commensal bacteria Lactobacillus are widely used as probiotic organisms conferring a heath benefit on the host. They have been implicated in promoting gut health via the stimulation of host immunity and anti-inflammatory responses, as well as protecting the intestinalmucosa against pathogen invasion. Lactobacilli grow by fermenting sugars and starches and produce lactic acid as their primary metabolic product. For efficient utilisation of varied carbohydrates, lactobacilli have evolved diverse sugar transport and metabolic systems, which are specifically induced by their own substrates. Many bacteria are also capable of sensing and responding to changes in their environment. These sensory responses are often independent of transport or metabolism and are mediated through membrane-spanning receptor proteins. We employed DNA-based pyrosequencing technology to investigate the changes in the intestinal microbiota of piglets weaned to a diet supplemented with either a natural sugar, lactose or an artificial sweetener (SUCRAM®, consisting of saccharin and neohesperidin dihydrochalcone (NHDC); Pancosma SA). The addition of either lactose or saccharin/NHDC to the piglets' feed dramatically increased the caecal population abundance of Lactobacillus, with concomitant increases in intraluminal lactic acid concentrations. This is the first report of the prebiotic-like effects of saccharin/NHDC, an artificial sweetener, being able to influence the commensal gut microbiota. The identification of the underlying mechanism(s) will assist in designing nutritional strategies for enhancing gut immunity and maintaining gut healt

    Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tsetse flies (Diptera: Glossinidae) are vectors of trypanosomes that cause sleeping sickness in humans and nagana in livestock across sub-Saharan Africa. Tsetse control strategies rely on a detailed understanding of the epidemiology and ecology of tsetse together with genetic variation within and among populations. High-resolution nuclear genetic markers are useful tools for elucidation of the genetic basis of phenotypic traits. In this study amplified fragment length polymorphism (AFLP) markers were developed to analyze genetic variation in <it>Glossina morsitans morsitans </it>from laboratory and field-collected populations from Zimbabwe.</p> <p>Results</p> <p>A total of seven hundred and fifty one loci from laboratory and field populations of <it>G. m. morsitans </it>from Zimbabwe were genotyped using AFLP with seven primer combinations. Analysis identified 335 polymorphic loci. The two populations could be distinguished by cluster and principal components analysis (PCA) analysis, indicating that AFLP markers can be used to separate genetically similar populations; at the same time differences observed between laboratory and field populations were not very great. Among the techniques investigated, the use of acetone was the most reliable method of preservation of tsetse for subsequent extraction of high molecular weight DNA. An interesting finding was that AFLP also enabled robust within-population discrimination of male and female tsetse flies due to their different X chromosome DNA complements.</p> <p>Conclusions</p> <p>AFLP represents a useful additional tool to add to the suite of techniques currently available for the genetic analysis of tsetse populations and represents a useful resource for identification of the genetic basis of important phenotypic traits.</p

    Draft Genome Sequence of the Bactrocera oleae Symbiont "Candidatus Erwinia dacicola".

    Get PDF
    "Candidatus Erwinia dacicola" is a Gammaproteobacterium that forms a symbiotic association with the agricultural pest Bactrocera oleae Here, we present a 2.1-Mb draft hybrid genome assembly for "Ca. Erwinia dacicola" generated from single-cell and metagenomic data
    corecore